THERMODYNAMIC PROPERTIES OF 1-BUTENE

JAMES H. WEBER

University of Nebraska, Lincoln, Nebraska

The thermodynamic properties of 1-butene have been calculated over a temperature range of 32° to 480°F. and at pressures up to 1,000 lb./sq. in. abs. These properties were determined from vapor-pressure, volumetric, heat-capacity, and latent-heat of vaporization data through the application of rigorous thermodynamic relationships. The calculated data have been found to be internally consistent. The enthalpy values are believed to be accurate to within ±0.5 B.t.u./lb. and the entropy values to ±0.0005 B.t.u./(lb.) (°R.).

Thermodynamic data are available for a number of paraffinic compounds but are limited to ethylene (16) and propene (10) in the olefinic series. It is the purpose of this paper to present thermodynamic data for 1-butene, one of the C_4H_8 olefins, important as a compound resulting from the dehydrogenation of n-butane, a step in the manufacture of 1, 3-butadiene.

AVAILABLE DATA

Volumetric data for 1-butene have been measured by three groups of investigators. The earliest work, that of Roper(13), covers the temperature range of—22° to +140°F. with the upper pressure limit of 16.5 lb./sq.in. abs. These data are correlated by an equation of state in the virial form

$$PV_M = RT + \frac{\beta}{V_M} \tag{1}$$

where β is the second viral coefficient and a function of temperature only. Roper expressed this function as

$$\beta = f + \frac{g}{T} + \frac{b}{T^2} \tag{2}$$

where f, g, and h, are constants. A more extensive investigation of the volumetric behavior was made by Olds, Sage, and Lacey (12), whose investigation covered the temperature range of 100° to 340° F. at pressures up to 10,000 lb./sq.in. abs. Liquid as well as vapor volumetric data are reported, including data for the liquid at the bubble point and the vapor at the dew point.

Beattie and Marple (8, 9) made two investigations of the behavior of 1-butene. The initial report (8) gives orthobaric liquid densities from 50° to 125°C. and the critical properties. The second investigation of Beattie and Marple (9) reports volumetric data from 150° to 250°C. and from densities of 1 to 8 moles/liter. The results, up to densities of 4 moles/liter, were fitted to the Beattie-Bridgman equation of state, and the constants are given.

Difficulties due to the polymerization of the 1-butene are reported by Olds, Sage, and Lacey (12) and Beattie and Marple (9). The former report that their sample apparently deteriorated after several hours' exposure to a temperature of 340° F., and the latter report slow polymerization at 200°C. (392°F.) and rapid deterioration at 250°C. (482°F.) The phenomenon limits somewhat the accuracy of the results at the higher temperatures.

Since there is very little overlap in the various sets of volumetric data, comparison of the results is impossible over most of the temperature and pressure range. Some comparison can be made of the data of Olds, Sage, and Lacey (12) with those of Beattie and Marple (9), but a double interpolation is necessary. This shows good agreement between the sets of data. Also, since the Beattie-Bridgman equation of state was fitted to the data of Beattie and Marple, volumetric data may be calculated at even values of temperature and pressure and compared with those of Olds, Sage and Lacey. Again this shows good agreement between the two sets of volumetric data over the limited range for which comparison is possible. Volumetric data for the saturated liquid from 30° to 77°F. have been reported *(1)*.

Several studies have been made of the vapor pressure-temperature relationship of 1-butene. Lamb and Roper (11) report data up to 32°F.; Olds, Sage and Lacey (12), data from 132.7°F. to the critical point; Beattie and Marple (8), data from -75° to 125°C.; and the A.P.I. Research Project 44(2) from 30° to 55°F. Olds, Sage, and Lacey fitted an equation,

 $\log P\,(\mathrm{lb./sq.}$ in. abs.) = 6.18466 -

$$\frac{-2285.22}{T} - 0.00054633\,T$$

to their results. Beattie and Marple fitted the equation

T (o K.)

to their data. A.P.I. 44 gives the constants for the Antoine equation for the range of data reported. As can be seen, the vapor pressuretemperature relationship has been well described. With the exception of the temperature range of 122° to 167°F. (50° to 75°C.), the data of Olds, Sage, and Lacey and of Beattie and Marple are in excellent agreement. In this temperature range, the vapor pressures determined by Olds, Sage, and Lacey are lower than those reported by Beattie and Marple by 1/2 to 1/4%. The data of Lamb and Roper and Beattie and Marple are in excellent agreement.

There is some question about the critical properties of 1-butene. Olds, Sage, and Lacey (12) report conditions at the critical as $t_c=297\,^{\circ}\mathrm{F}$., $P_c=588$ lb./sq.in. abs., and $V_c=3.85$ cu.ft./lb. mole; Beattie and Marple (8) report $t_c=295.6\,^{\circ}\mathrm{F}$. (146.4 $^{\circ}\mathrm{C}$.), P=583 lb./sq.in. abs. (39.7 atm.), and $V_c=3.67$ cu.ft./lb. mole (0.241 liter/mole). These latter values have apparently been accepted by the A.P.I. project (3) and have been used for this work.

Thermal data available include isobaric heat capacities of the liquid at the bubble point, measured by Schlinger and Sage (15); latent heat of vaporization information at the normal boiling point, 20.73° F., and 77°F., reported by A.P.I. 44 (4); and heat capacities of the ideal gas at unit fugacity, reported by A.P.I. 44(5). These latest listed data were used to calculate enthalpies and entropies of the ideal gas at unit fugacity up to 2,200°F. Additional constants used in the calculations were, molecular weight of 1-butene, 56.104; gas-law constant, R, 10.730 (lb./sq.in. abs.) (cu. ft./lb. mole) (°R.); ice point, 491.69°R.

METHOD OF CALCULATIONS

The specific volume of the saturated liquid over the complete range of temperatures, from the literature sources cited, were plotted against temperature on a largescale graph and values at even 10°F. increments read; these values are reported in Table 1. The specific volumes of the saturated vapor were, in the main, obtained directly from the literature references given above. At temperatures below 100°F., however, values were obtained by use of the Clapeyron equation, since accurate latentheat-of-vaporization and vaporpressure data were available below this temperature. The residual volumes, a's, were determined and smoothed on a plot of α vs. temperature. The specific volume data of the saturated vapor are reported in Table 1.

The specific volume data of the superheated vapor were obtained from the references cited above. The Beattie-Bridgman equation, with constants reported by Beattie and Marple(9), was used to determine the data above 340°F. and pressure above 500 lb./sq.in. abs. The volumetric data were smoothed with the aid of large-scale plots of α vs. temperature with pressure parameters.

A region for which data were not available lay above the 340°F. isotherm and between the 14.7 and 500 lb./sq.in. abs. isobars. To complete the data, the Berthelot equation of state was used to calculate

the volumetric data below 100 lb./ sq.in. abs. It was felt this could be done without error, since the equation was tested at lower temperatures than 340°F. and below 100 lb./sq.in. abs. pressure, and excellent agreement with the experimental data was obtained. A plot of a vs. pressure with temperature parameters was then drawn. The isotherms above 340°F. were completed without difficulty, for the residuals changed very little up to 500 lb./sq. in. abs. at the high temperature involved. Also, the interpolation was facilitated by use of the completed isotherm at 340°F. as a guide.

Fugacity. The fugacity of the saturated and superheated vapor was determined from the graphical integration of a plot of α at constant temperature vs. pressure or mathematically,

$$\ln \frac{f}{P} = -\frac{1}{RT} \int_{0}^{P} \alpha \, dP \quad (3)$$

The results of this operation are reported in Tables 1 and 2. The fugacity data up to temperatures of 340°F. have been reported by Sage and Lacey(14); their values agree very well with those reported in this work, as may be expected, since the same set of volumetric data was used in both cases.

Selection of the Datum Plane. The enthalpy and entropy of the saturated liquid at 32°F. were arbi-

trarily set equal to zero. This required that the enthalpy and entropy data for 1-butene in the ideal gas state, unit fugacity, reported in A.P.I. 44(6,7) be changed to the datum plane used in this work.

Latent Heat of Vaporization. With the exception of the two values given in A.P.I. 44(4), all the latentheat-of-vaporization data were calculated by the Calpeyron equation,

$$\frac{dP}{dT} = \frac{\Delta H_V}{T\Delta V} \tag{4}$$

Vapor-pressure and volumetric data were obtained from literature sources cited above.

Saturated Liquid and Vapor Phases. The heat capacity data of liquid 1-butene at its bubble point reported by Schlinger and Sage (15) enabled the evaluation of the enthalpy and entropy of the saturated liquid phase up to 220°F. Above this temperature these properties were determined by subtracting the enthalpy or entropy of vaporization from their respective values in the saturated vapor phase; this was necessary since there were no heat-capacity data above 220°F. The thermodynamic properties of the saturated vapor phase below 220°F. were obtained by adding the enthalpy or entropy of vaporization to their respective values in the saturated liquid phase. Above 220°F. the isobars on enthalpy-temperature and temperature-entropy plots were extrapo-

Entropy

TABLE 1.—THERMODYNAMIC PROPERTIES OF SATURATED 1-BUTENE

						Entropy					
			Volum			Enthalpy			77		
Tommore	Danasana	Volume						Vapor-			
Tempera-	Pressure	Fugacity				Vapori-		Liquid,	ization,	Vapor,	
ture,	lb./sq. in.,	pressure,	Liquid,	Vapor,	Liquid,	zation,	Vapor,	B.t.u.	B.t.u./	B.t.u./	
°F.	abs.	f/P	cu. ft./lb.	cu. ft./lb.	B.t.u./lb.	B.t.u./lb.	B.t.u./lb.	(lb.) (°R.)	(lb.) (°R.)	(lb.) (°R.)	
32	18.64	0.961	0.02588	4.79	0.0	166.1	166.1	0.0000	0.3378	0.3378	
40	21.91	0.954	0.02610	4.19	3.4	164.9	168.3	0.0068	0.3300	0.3368	
50	26.60	0.944	0.02638	3.52	8.4	163.0	171.4	0.0167	0.3198	0.3365	
60	32.0	0.935	0.02667	2.89	13.6	160.8	174.4	0.0268	0.3094	0.3365	
70	38.2	0.926	0.02698	2.41	19.2	158.3	177.5	0.0375	0.2988	0.3365	
80	45.2	0.917	0.02730	2.25	25.4	155.1	180.5	0.0491	0.2874	0.3365	
90	53.1	0.909	0.02770	1.76	31.2	152.5	183.7	0.0597	0.2774	0.3371	
100	62.5	0.900	0.02811	1.52	37.0	149.7	186.7	0.0702	0.2675	0.3377	
110	72.1	0.890	0.02852	1.33	42.9	146.7	189.6	0.0806	0.2575	0.3381	
120	83.5	0.881	0.02898	1.16	48.7	143.8	192.5	0.0907	0.2481	0.3388	
130	96.3	0.872	0.02943	1.01	54.4	140.8	195.2	0.1007	0.2388	0.3395	
140	110.2	0.862	0.02992	0.875	60.5	138.0	198.5	0.1107	0.2301	0.3408	
150	125.5	0.852	0.03042	0.768	66.6	134.9	201.5	0.1207	0.2213	0.3420	
160	142.4	0.843	0.03091	0.676	72.7	131.7	204.4	0.1307	0.2125	0.3432	
170	161.3	0.831	0.03145	0.595	79.0	128.5	207.5	0.1409	0.2041	0.3450	
180	182.0	0.820	0.03202	0.524	85.5	124.9	210.4	0.1511	0.1952	0.3463	
190	204.7	0.807	0.03261	0.463	92.2	120.9	213.1	0.1615	0.1861	0.3476	
200	228.6	0.795	0.03328	0.409	99.1	116.8	215.9	0.1721	0.1771	0.3492	
210	254.6	0.783	0.03399	0.364	106.4	112.2	218.6	.01831	0.1675	0.3506	
220	282.8	0.770	0.03477	0.324	114.1	107.1	221.2	0.1944	0.1576	0.3520	
230	313.4	0.758	0.03567	0.286	122.0	101.4	223.4	0.2059	0.1470	0.3529	
240	346.4	0.744	0.03671	0.251	130.0	95.2	225.2	0.2174	0.1361	0.3535	
250	382.5	0.731	0.03800	0.219	138.4	88.3	226.7	0.2293	0.1244	0.3537	
260	421.3	0.717	0.03962	0.189	147.1	79.4	226.5	0.2415	0.1103	0.3518	
270	462.2	0.703	0.04180	0.161	158.5	67.9	226.4	0.2572	0.0931	0.3503	
280	505.0	0.688	0.04488	0.134	173.4	52.0	225.4	0.2748	0.0703	0.3451	

TABLE 2.—THERMODYNAMIC PROPERTIES OF SUPERHEATED 1-BUTENE

	P	TABLE 2	.—THERMODYNAN	IIC PROPER	TIES OF SUPERHI	EATED 1-BUT	TENE	
Tempera- ture °F.	Volume cu. ft./lb.	Enthalpy B.t.u./lb.	Entropy B.t.u./(lb.) (°R.)	$\frac{\text{Fugacity}}{\text{pressure}}$ $\frac{f/P}{}$	Volume cu. ft./lb.	Enthalpy B.t.u./lb.	Entropy B.t.u./(lb.) (°R.)	$\frac{\text{Fugacity}}{\text{pressure}}$ $\frac{f/P}{}$
	14.696	in. abs. (46.7°)*						
(at. satn.) 32			. (30.10)		3.657	170.5	0.3366	0.948
32	6.156	166.7	0.3469	0.964		2.00	0,000	0.0 10
40 60	6.272 6.557	169.4 176.5	0.3526 0.3665	0.966 0.970	3.772	175.3	0.3484	0.952
80	6.830	176.5 183.8	0.3803	0.970	3.772 3.940	175.3 182.6	$0.3484 \\ 0.3622$	0.952
100	7.110	191.3	0.3940	0.977	4.103	190.2	0.3758	0.960
120 140	7.384 7.657	$\frac{199.4}{207.6}$	0.4077 0.4213	0.979 0.982	$4.275 \\ 4.441$	$\frac{198.4}{206.7}$	0.3894 0.4029	0.964
160	7.928	215 .9	0.4347	0.983	4.605	215.0	0.4029	$0.969 \\ 0.971$
180	8.199	224.2	0.4480	0.985	4.767	223.4	0.4296	0.975
200 220	8.468 8.737	232.2 241.2	0.4613 0.4745	0.986 0.988	4.925 5.086	231.5 240.5	0.4428 0.4560	$0.977 \\ 0.980$
240	9.006	250.1	0.4876	0.989	5.246	249.4	0.4691	0.982
260 280	9.274 9.541	259.0	0.5005	0.990 0.991	5.407	258.4	0.4820	0.983 0.984
300	9.541 9.807	268.2 278.3	0.5134 0.5263	0.991	5.565 5. 72 6	267.6 277.7	0.4948 0.5077	$0.984 \\ 0.985$
300 320	10.08	288.4	0.5390	0.991 0.992	5.882	287.9	0.5204	0.987
340 360	10.34 10.59	298.6	0.5517 0.5643	0.993 0.993	6.045 6.198	298.1	0.5331	0.988
360 380	10.86	308.9 319.5	0.5769	0.993	6.355	308.4 319.0	0.5457 0.5582	0.989 0.990
400	11.12	329.8	0.5893	0.994	6 513	329.6	0.5706	0.991
420 440	11.38 11.65	340.6 351.6	0.6017 0.6141	0.995 0.995	6.668 6.825	340.2 351.3	0.5831 0.5954	$0.992 \\ 0.992$
460	11.91 12.17	362.8	0.6263	0.996	6.668 6.825 6.980	362.4	0.6076	0.993
480	12.17	373.9	0.6384	0.996	7.135	373.5	0.6197	0.993
	50	lb./sq. in. abs.	. (86.2°)*			75 lb./sq.	in. abs. (112.7°)*	
(at satn.)	1.891	182.5	0.3367	0.912	1.280	190.4	0.3383	0,888
100 120	1.957 2.049	187.7 196.0	0.3481 0.3620	$0.921 \\ 0.929$	1 205	193.0	0.3444	0.004
140	2.140	204.5	0.3758	0.929	1.305 1.371	201.7	0.3586	0.894 0.907
160	2.229	213.0	0.3758 0.3894	0.944	1.436	210.5	0.3725	0.916
180 200	2.308 2.402	$\frac{221.4}{229.7}$	0.4029 0.4163	0.950 0.955	1.499 1.560	$219.1 \\ 227.5$	0.3863 0.3999	0.926 0.932 0.939
220	2.488	238.8	0.4296	0.959	1.620	236.2	0.4134	0.939
240 260	2.571 2.653	247.8	0.4428	0.963	1.679	245. 9	0.4267	0.944
280	2.737	$256.9 \\ 266.1$	0.4559 0.4689	0.966 0.969	1.737 1.795	$255.1 \\ 264.2$	$0.4400 \\ 0.4521$	0.949 0.953
300	2.819	276.4	0.4818	0.971	1.860	274.8	0.4662	0.956
320 340	2.901 2.981	286.6	0.4947 0.5074	0.973 0.976	1.909 1.964	285.1	0.4791	0.960
360	3.063	296.9 307.3	0.5201	0.978	2.019	295.5 306.0	0.4920 0.5047	0.964 0.966
380	3.143	317.9	0.5327	0.980	2.074	316.7	0.5175	0.969
$\begin{array}{c} 400 \\ 420 \end{array}$	3.225 3.306	328.5 339.1	0.5452 0.5577	0.981 0.983	2.129 2.183	327.3 338.1	0.5300 0.5426	0.972
440	3.386	350.3	0.5700	0.984	2.236	349.3	0.5550	$0.974 \\ 0.976$
460 480	3.464 3.544	361.5	0.5823	0.986	2.292	360.5	0.5673	0.978
400		372.7	0.5945	0.986	2.347	371.9	0.5795	0.979
(at cath)		lb./sq. in. abs		0.000	0.040		in. abs. (164.0°)*	0.000
(at satn.) 140	0.964 0.984	196.3 198.8	0.3399 0.3448	0.869 0.876 0.888 0.901	0.642	205.6	0.3438	0.839
160	0.984 1.038 1.089	198.8 207.9 216.7	0.3592 0.3733	0.888				
180	1.089	216.7	0.3733 0.3872	0.901	$0.672 \\ 0.713$	$212.7 \\ 220.5$	0.3545 0.3671	0.851
220	1.187	225.3 234.2 244.0	0.4010 0.4145	0.919	0.749	229.9	0.3815	0.867 0.879
200 220 240 260 280 300 320 340 360 380 400	1.138 1.187 1.233 1.278 1.324 1.362	244.0	0.4145	0.926	0.782	240.1	0.3956 0.4096	0.889 0.899
280 280	1.278	253.3 362.5 273.2	0.4280 0.4403	0.932 0.938	0.818 0.866	249.7 259.4	$0.4096 \\ 0.4229$	0.899
300	1.362	273.2	0.4545	0.943	0.866 0.881	259.4 270.0	0.4369	0.908 0.915 0.922
320 340	1.411	283.6 294.1 304.7	0.4675	0.947	0.019	280.6	0.4502	0.922
360	1.455 1.496	304.7	0.4805 0.4933	0.956	$0.944 \\ 0.972$	302.0	$0.4635 \\ 0.4765$	0.930 0.934 0.939
380	1.537	315.5	0.5063	0.959	1.002	313.0	0.4765 0.4898	0.939
400 420	1.537 1.580 1.621	315.5 326.1 337.0	0.5188 0.5315	0.962 0.965	1.031 1.059	291.3 302.0 313.0 323.8 334.8	0.5025 0.5153 0.5280	0.943 0.948
420 440 460	1.663 1.705	348.3 359.6	0.5440	0.967	1.089	346.2	0.5280	0.952
460 480	1.705 1.747	359.6 371.0	0.5563 0.5686	0.911 0.919 0.926 0.932 0.938 0.943 0.947 0.953 0.956 0.959 0.962 0.965 0.967 0.971	0.944 0.972 1.002 1.031 1.059 1.089 1.118 1.129	357.7 369.2	0.5404	0.956
400				0.973	1.129		0.5529	0.959
(at onto	200 0.4738	lb./sq. in. abs		A 010	A 0007		in. abs. (225.8°)*	0.50
(at satn.) 200	0.4738	212.6 216.9	0.3476 0.3530	0.812 0.823 0.840	0.2997	222.6	0.3522	0.764
220	0.4965 0.5278	216.9 225.5	0.3654	0.840	0.0000	005 -		_
240 260	0.5556 0.5836	236.1 245 9	0.3803 0.3948	0.853 0.867	$0.3206 \\ 0.3454$	228.0 237.6	0.3591 0.3719	0.781 0.801
280	0.5836 0.6112	236.1 245.9 255.8 266.7	0.4086	0.878	0.3683	248.5 259.4	0.3868	0.819
300 320	0.638 0.664	266.7 277.5	0.4230 0.4368	0.843 0.853 0.867 0.878 0.888 0.897	0.3903 0.4121	259.4	0.4009 0.4158	0.834
260 280 300 320 340	0.690	288.4	0.4504	0.908	0.4121	270.8 282.2	0.4158	0.849 0.864

^{*}Saturation temperature.

TABLE 2.—THERMODYNAMIC PROPERTIES OF SUPERHEATED 1-BUTENE (continued)

Tempera- ture, °F.	Volume, cu. ft./lb.	Enthalpy, B.t.u./lb.	Entropy, B.t.u./(lb.) (°R.)	Fugacity, Pressure f/P	Volume, cu. ft./lb.	Enthalpy, B.t.u./lb.	Entropy, B.t.u./(lb.) (°R.)	Fugacity, pressure f/P
360 380 400 420 440 460 480	200 0.712 0.733 0.758 0.781 0.803 0.827 0.848	lb./sq. in. abs 299.3 310.4 321.4 332.6 344.1 355.7 367.4	. (188.0°) * 0.4637 0.4772 0.4901 0.5031 0.5160 0.5285 0.5412	0.914 0.920 0.925 0.931 0.936 0.942 0.946	0.449 0.466 0.483 0.500 0.516 0.532 0.549	300 lb./sq, in. 293.6 305.1 316.5 328.0 339.9 351.7 363.8	abs. (225.8°)* 0.4441 0.4582 0.4716 0.4850 0.4983 0.5111 0.5241	0.872 0.881 0.889 0.897 0.904 0.912 0.920
	400	lb./sq. in. abs					abs. (278.6°)*	
(at satn.) 260 280	0.2042 0.2133 0.2388 0.2596	226.5 228.9 238.8	0.3524 3.3551 0.3674	0.726 0.734 0.759	0.1367 0.1408	226.0 226.4	0.3460 0.3471	0.691 0.694
280 300 320 340 360 380 400 420 440 460 480	0.2596 0.2791 0.2974 0.315 0.329 0.344 0.357 0.371 0.385 0.399	249.9 262.6 275.0 287.2 299.4 311.2 323.0 335.3 347.5 359.9	0.3074 0.3816 0.3971 0.4127 0.4278 0.4427 0.4567 0.4705 0.4842 0.4972 0.5105	0.759 0.779 0.800 0.821 0.832 0.844 0.853 0.864 0.874 0.885 0.895	0.1405 0.1755 0.1982 0.2154 0.2317 0.2461 0.2595 0.2726 0.2848 0.2967 0.3090	228.4 238.5 252.1 266.1 279.7 293.0 305.2 317.3 330.1 342.7 355.4	0.3630 0.3630 0.3799 0.3968 0.4125 0.4287 0.4434 0.4576 0.4715 0.4848 0.4985	0.722 0.749 0.776 0.791 0.807 0.820 0.835 0.847 0.859
		600 lb./sq. in					q. in. abs.	
320 340 360 380 400 420 440 460 480	0.1354 0.1571 0.175 0.189 0.202 0.214 0.225 0.236 0.246	240.2 256.5 270.9 285.6 298.5 311.0 324.2 337.5 350.5	0.3611 0.3811 0.3972 0.4152 0.4305 0.4448 0.4600 0.4737 0.4877	0.698 0.731 0.749 0.769 0.786 0.803 0.817 0.832 0.846	0.0857 0.1098 0.1311 0.1475 0.1617 0.1724 0.1827 0.1931 0.2031	222.4 242.0 260.5 277.1 291.1 303.6 318.3 331.9 345.3	0.3335 0.3581 0.3811 0.4015 0.4177 0.4322 0.4483 0.4635 0.4779	0.642 0.683 0.707 0.732 0.752 0.772 0.789 0.805 0.821
		800 lb./sq. in			900 lb./sq. in. abs.			
340 360 380 400 420 440 460 480	0.0752 0.0969 0.1144 0.1286 0.1409 0.1516 0.1617 0.1711	226.8 248.3 267.1 283.0 297.2 312.1 326.1 339.8	0.3373 0.3638 0.3871 0.4050 0.4222 0.4392 0.4540 0.4689	0.634 0.665 0.695 0.718 0.741 0.760 0.779 0.797	0.0569 0.0748 0.0900 0.1042 0.1167 0.1271 0.1370 0.1459	211.7 235.8 256.9 274.6 290.0 305.6 320.0 334.0	0.3182 0.3474 0.3728 0.3928 0.4115 0.4295 0.4448 0.4603	0.588 0.624 0.658 0.682 0.706 0.730 0.753 0.773
		1,000 lb./sq. ir						
340 360 380 400 420 440 460 480	0.0500 0.0625 0.0748 0.0867 0.0981 0.1085 0.1176 0.1264	199.5 225.4 247.9 266.7 282.8 298.9 313.7 328.0	0.3033 0.3340 0.3605 0.3828 0.4011 0.4198 0.4355 0.4515	0.548 0.587 0.623 0.650 0.678 0.704 0.728 0.750		,		

^{*} Saturation temperature.

lated to the vaporization temperature. The enthalpy and entropy were then obtained directly from the plots. In all cases the extrapolations were over short ranges of temperature, and the final results were smoothed on an enthalpy-entropy plot. Table 1 lists the properties of the saturated liquid and vapor phases.

Entropy and Enthalpy. The change of entropy with pressure under isothermal conditions was determined through the use of the equation

$$M(S_P - S^o)_T = -\int_{P}^{P} \frac{R}{P} dP +$$

$$\int_{P'}^{P} (\frac{\partial \alpha}{\partial T})_{P} dP \tag{5}$$

the second term in the right-hand member of the equation being determined by graphical integration. The changes calculated from this equation were then added to the entropy of the ideal gas at the same temperature. The change in enthalpy of the superheated vapor with pressure under isothermal conditions was determined by use of the equation

$$M (H_P - H^o)_T = -$$

$$\int_{P^{o}}^{P} \left[\alpha - T \left(\frac{\partial \alpha}{\partial T} \right)_{P} \right] dP \quad (6)$$

In this case the entire right-hand member of the equation was evaluated by graphical integration. The changes in enthalpy thus calculated were then added to the enthalpy of the ideal gas at the same temperature, and the results were plotted on a large-scale graph as

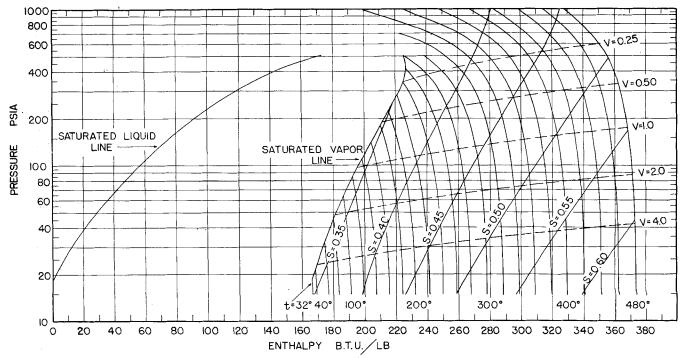


FIG. 1. PRESSURE-ENTHALPY DIAGRAM FOR 1-BUTENE.

temperature - entropy, enthalpytemperature, and enthalpy-entropy and smoothed. The final results are presented in tabular form in Table 2. The complete results, for both saturated and superheated conditions, are presented in graphical form in Figure 1.

INTERNAL CONSISTENCY OF THE RESULTS

One method to check the internal consistency of thermodynamic data of this type is through the use of the equation:

$$dH = TdS + VdP \tag{7}$$

which is a statement of the first two laws of thermodynamics. Setting the value of the entropy at a constant reduces the equation to

$$dH = VdP \tag{8}$$

Multiplying the right-hand member by P/P and integrating results in the equation

$$H_2 - H_1 = PV \int_{P_1}^{P_2} d \ln P \quad (9)$$

The right-hand member can then be evaluated by graphical integration and compared with enthalpy differences obtained from the calculated data. Such consistency checks were made on the thermodynamic data presented in this paper, and good agreement was obtained in all instances.

Since there are not enough thermal data to check the results by an independent method, the accuracy of the data presented here cannot be stated with certainty. However, it is believed that the enthalpy values are accurate within ± 0.5 B.t.u./lb. and the entropy values, within ± 0.0005 B.t.u./(lb.) (°R).

CONCLUSIONS

The thermodynamic properties of 1-butene, using fundamental relationships, have been calculated over the temperature range 32° to 480°F. and up to pressures of 1,000 lb./sq.in. abs. The data have been found to be internally consistent and are presented in graphical and tabular form.

NOTATION

H = enthalpy, B.t.u./lb.

M = molecular weight

P = pressure, lb./sq.in. abs., unless otherwise specified

R = gas-law constant

S = entropy, B.t.u./lb.

 $T = absolute temperature, {}^{\circ}R.$ unless specified as °K.

V = specific volume, cu.ft./lb.

f =fugacity, same units as pressure

 $t = \text{temperature}, \, \, ^{\circ}\text{F}.$

 $\alpha = residual$ volume, cu.ft./lb. mole, $\alpha = \frac{RT}{P} - V_M$

 $\beta = second$ virial coefficient, defined in Equation (1)

Subscripts

c = critical property

M = molal quantity

V = vaporization

Superscripts

o = property in ideal gas state at unit fugacity

LITERATURE CITED

- 1. Am. Petroleum Inst. Research Project 44, Table 24-E, Nat. Bur. Standards.
- 2. Ibid., Table 24 K-E.
- 3. Ibid., Table 8i.
- 4. *Ibid.*, Table 8m.
 5. *Ibid.*, Table 7 v-E.
- 6. Ibid., Table 24 u-E.
- 7. Ibid., Table 24t.
- 8. Beattie, J. A., and S. Marple, Jr., J. Am. Chem. Soc., 72, 1449-52 (1950).
- 9. Ibid., 4143-5 (1950).
- 10. Canjar, L. N., M. Goldman, and H. Marchman, Ind. Eng. Chem., **43**, 1186-93 (1951).
- 11. Lamb, A. B., and L. B. Roper, J. Am. Chem. Soc., 62, 806-14 (1940).
- 12. Olds, R. H., B. F. Sage, and W. N. Lacey., Ind. Eng. Chem., 38, 301-3 (1946).
- 13. Roper, E. E., J. Phys. Chem., 44, 835-47 (1940).
- 14. Sage, B. H., and W. W. Lacey, Pet. Refiner, 29, No. 10, 123-7 (1950).
- 15. Schlinger, W. G., and B. H. Sage, Ind. Eng. Chem., 41, 1779-82 (1949).
- 16. York, R., Jr., and E. R. White, Jr., Trans. Am. Inst. Chem. Engrs., 40, 227-50 (1944).